
The updated pages to…

Hexagonal Architecture Explained

How the Ports & Adapters architecture simplifies

your life, and how to implement it
Updated 1st Edition

Alistair Cockburn
Juan Manuel Garrido de Paz

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 2 of 194

.

©Alistair Cockburn 2025 all rights reserved
ISBN 979-8-9985862-0-0 for paperback
ISBN 979-8-9985862-1-7 for ePub
Humans and Technology Press
5325 20th Ave S
Gulfport, FL 33707
v1.1b 20250420-1012 for paper&ePub books

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 3 of 194

Other books by Alistair Cockburn
1997 Surviving Object Oriented Projects

https://www.amazon.com/Surviving-Object-Oriented-Projects-Alistair-
Cockburn/dp/0201498340

2000 Writing Effective Use Cases
https://www.amazon.com/Writing-Effective-Cases-Alistair-Cockburn/dp/0201702258

2001 Agile Software Development (1st ed)
https://www.amazon.com/Agile-Software-Development-Alistair-
Cockburn/dp/0201699699

2002 Patterns for Effective Use Cases
https://www.amazon.com/Patterns-Effective-Cases-Software-
Development/dp/0201721848

2003 People and Methodologies in Software Development (Dr. Philos.)
https://web.archive.org/web/20140329203845/http://alistair.cockburn.us/People+and
+methodologies+in+software+development

2004 Crystal Clear: A human-powered methodology for small teams
https://www.amazon.com/Crystal-Clear-Human-Powered-Methodology-Development-
ebook/dp/B00B8UX6K2

2006 Agile Software Development: The cooperative game (2nd ed)
https://www.amazon.com/Agile-Software-Development-Cooperative-Game-
ebook/dp/B0027976NG

2021 Design in Object Technology: Class of 1994
https://www.amazon.com/Design-Object-Technology-Class-Object-Oriented-
ebook/dp/B09GPP9K1L

2022 Design in Object Technology: The Annotated Class of 1994
https://www.amazon.com/Design-Object-Technology-Annotated-Class-
ebook/dp/B0BFJYTRFP

2022 Love Trio Trio del Amor (selected poems)
https://www.amazon.com/Love-Trio-Amor-Alistair-Cockburn-ebook/dp/B0BPCCHZCG

2024 Unifying User Stories, Use Cases, Story Maps (preview ed.)
https://www.amazon.com/Unifying-User-Stories-Cases-Story-ebook/dp/B0D4JSQ5DY
ePub directly: https://store7710079.company.site/Unifying-User-Stories-Use-Cases-
Story-Maps-epub-p655931612

2024 Hexagonal Architecture Explained (preview ed)
https://www.amazon.com/Hexagonal-Architecture-Explained-Alistair-
Cockburn/dp/173751978X

2025 Hexagonal Architecture Explained, Updated 1st ed.
ePub directly: https://store7710079.company.site/Hexagonal-Architecture-
Explained-ePub-p655931616

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 4 of 194

Kudos for the book

I just wanted to say thank you for hexagonal architecture.

My team used to do it for a while and we finally we got it right. Making
changes to the services we hexagonalized properly feels really good and
easy.The same changes kept giving us headaches in other services.

Your recent book recently helped us to gain confidence that we are
doing it right and to see where ideas from other patterns were mixed in
by people blogging on the topic.

Michael Kutz
Software Engineer at REWE digital GmbH

* * * * *

The publication of this book has been a great joy for several reasons.
One of them is personal, as you might have guessed if you follow this
blog. The other reason is that we finally have an authoritative reference
guide to the pattern.

it is a very complete and detailed work. You can consider it a must-have
reference both theoretically and practically, as it offers a fairly
comprehensive implementation guide.

If you're really interested in understanding it and, possibly, using it in
your projects, the book is the best source available, and it also includes
the few original references you could find online.

Fran Iglesias,
Staff Software Engineer at Qualifyze

* * * * *

Been deep in Hexagonal Architecture lately—pure gold from
@TotherAlistair & Juan Manuel Garrido de Paz. Highly recommend
(get the book!)

Eugene F. Barker

* * * * *

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 5 of 194

I found the book to be very simple and practical. In fact, I used a few
of its ideas in some refactoring I'm doing at work and they made a
real difference.

What's more, it contains some detailed DDD discussion and its
relation to Ports and Adapters!

Rubyists might be especially pleased to find examples of how to
implement that architecture in Ruby (I definitely was!).
 I strongly recommend it.

Hemal Varambhia
Senior Technical Coach

* * * * *

About the preview edition:

“It gives interesting insights not just on how the pattern can be
implemented, but also on its story and the design considerations that
revolve around it.”

About the additions in the updated 1st edition:

“I find that the additions you did are very valuable not just in terms of
understanding the pattern, but also in terms of understanding how it
fits with the existing literature, related patterns, testing strategies etc.”

Eleonora Ciceri

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 10 of 194

Preface
This is the full 1st edition
In early 2024, after working on this book for nearly 5 years, Juan and I
(Alistair) felt the pressure to get it out “Now!”. We decided to publish a
preview edition, containing all the critical information, but possibly not
in the best order, or needing better explanations in places.

That decision turned out to be prescient. Juan passed away very
suddenly, just three weeks before the book was set to go to production.
The preview edition came out barely in time for Alistair’s visit to his
home town, Sevilla, an emotional event, for sure. Happily, the book
contains Juan’s best thoughts up to that time.

Since then, I have watched numerous discussions online, I have taught
to the book, found a few more topics for the FAQ section, and found
one – almost humerously wrong – error in the first code sample. It is a
credit to Juan that we argued so ferociously over the content that the
content itself remains stable.

There are no significant changes to the original version, mostly I added a
few pages of extra notes and fixed minor mistakes. The new text is
marked with this solid gray bar down the side.

Since this update is from me alone, I will freely use the word ‘I’ and will
feel free to add small anecdotes to make your reading a little more fun.

Alistair, April 10, 2025

(Preface to the Preview edition)
Juan and I feel it important enough to get this into your hands that we
are publishing this edition before what normally constitutes fine tuning
the book: sending to reviewers incorporating their changes, creating an
index of key words, tuning page layout and so on. That process would
take up to another year, and we feel you need this information today.

This edition has all the information we have at hand as of April 2024, in
the best order we can think of. In other words, you can use it. Following

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 14 of 194

1.1. Copy this code
The Ports & Adapters architecture, first documented in 2005 as the
“Hexagonal Architecture” pattern, demands this:

Create your application to work without either a UI or a database so
you can run automated regression-tests against it, change connected
technologies, protect it from leaks between business logic and
technologies, work when the database becomes unavailable, and link
applications together without any user involvement.

The most surprising part of implementing it is this requirement:

“Never explicitly name any external object or technology. Always
take a parameter for any external object or technology you wish to
access."

That requirement has a weak and a strong implementation. In the
“weak” implementation, the programmer knows that the database will
use SQL (for example), and without tying to a particular database, still
expresses the interface in SQL. While technically meeting the rules of
the Ports & Adapters architecture, that still handcuffs the system to
SQL, which is not what we are after.

To get a full, or “strong” implementation of the Ports & Adapters
architecture, we need:

"The app cannot know anything about the external technology."

That is, the Service Provider Interface (SPI) or “driven port” is expressed
purely in terms of concepts that make sense in the language of the
domain. It can’t even know that there is a database, let alone SQL.

The easiest way to show this is with a bit of code. The code is much
simpler than all the discussions of why the code looks that way.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 15 of 194

Therefore, to get started, replicate this code snippet in your larger
system. This Java code shows the interface definitions explicitly:

interface ForCalculatingTaxes {
 double taxOn(double amount);
}

interface ForGettingTaxRates {
 double taxRate(double amount);
}

class TaxCalculator implements ForCalculatingTaxes {
 private ForGettingTaxRates taxRateRepository;
 public TaxCalculator(ForGettingTaxRates taxRateRepository) {
 this.taxRateRepository = taxRateRepository;
 }
 public double taxOn(double amount) {
 return amount * taxRateRepository. taxRate(amount);
 }
}

class FixedTaxRateRepository
 implements ForGettingTaxRates {
 public double taxRate(double amount) {
 return 0.15;
 }
}

class Main {
 public static void main(String[] args) {
 ForGettingTaxRates taxRateRepository = new
 FixedTaxRateRepository();
 ForCalculatingTaxes myCalculator = new TaxCalculator(
 taxRateRepository);
 System.out.println(myCalculator.taxOn(100));
 }

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 16 of 194

The preview edition contained a mistake. Without studying the previous
code, see if you can find it in this original version:

interface ForCalculatingTaxes {
 double taxOn(double amount);
}

interface ForGettingTaxRates {
 double taxRate(double amount);
}

class TaxCalculator implements ForCalculatingTaxes {
 private ForGettingTaxRates taxRateRepository;
 public TaxCalculator(ForGettingTaxRates taxRateRepository) {
 this.taxRateRepository = taxRateRepository;
 }
 public double taxOn(double amount) {
 return amount * taxRateRepository. taxRate(amount);
 }
}

class FixedTaxRateRepository
 implements ForGettingTaxRates {
 public double taxRate(double amount) {
 return 0.15;
 }
}

class Main {
 public static void main(String[] args) {
 ForGettingTaxRates taxRateRepository = new
 FixedTaxRateRepository();
 TaxCalculator myCalculator = new TaxCalculator(
 taxRateRepository);
 System.out.println(myCalculator.taxOn(100));
 }

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 17 of 194

I could say, “almost comical,” because Ricardo Guzmán Velasco
(@RGVgamedev on Twitter) found it at the book launch. He came up
and said he didn’t understand why I needed the driving port
declaration. I went to explain, pulled my finger down the code, and
went, “Crap.” He found the mistake within minutes of launch. Sigh.

The mistake is giving myCalculator type TaxCalculator, that is, typing
with the class instead of the interface. With that mistake, the interface
definition at the top is meaningless.

What followed over the next months was interesting. Some people
wrote in and said that the interface declaration was important:

* Convention: It is the standard programming convention in
languages that have that feature to type by interface, not class.

* The interface declaration is intended to provide the minimum
interface that we want to expose.

* If every client couples to TaxCalculator, you lose the freedom to
change its implementation. If you create another
ForCalculatingTaxes implementation, you have to change all
clients when you want to switch the implementation.

* The purpose of type-checking is to catch a certain class of errors
at compile time. Declaring the type as the class and not the
interface defeats the purpose of typing. You lose the safety you
thought you were getting.

Others wrote to say that there is no real problem in typing the variable
with the class because for an app, the public methods are probably
exactly the interface it should export, and you’re unlikely to make a
second implementation of the app. Shoutout to Nicky Ramone
(@nickyramone77) and Chris F Carroll (@chrisfcarroll.bsky.social) for
these insights.

For them, the interface declaration at the top is unnecessary, which
means the published code is still not right.

In the end, it seems there are two reasonable schools of thought, each
with its own defenders.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 18 of 194

In one, declare and use the interface declaration:

interface ForCalculatingTaxes {
 double taxOn(double amount);
}

class TaxCalculator implements ForCalculatingTaxes {
 … (public methods) …
}

class Main {
 …
 ForCalculatingTaxes myCalculator = new TaxCalculator(
 taxRateRepository);
}

In the other, don’t declare it. Just use the class:

interface ForCalculatingTaxes {
 double taxOn(double amount);
} (don’t write this code)

class TaxCalculator {
 … (public methods) …
}

class Main {
 …
 TaxCalculator myCalculator = new TaxCalculator(
 taxRateRepository);
 }

My mistake was having a foot in each camp, declaring the interface and
then not using it.

In your life, decide which way you prefer to write.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 27 of 194

The difficulty of naming

We sweated over naming. The thing is, there are three things to talk
about: actor, adapter, and port. We need two adjectives for each and
tried all of these: driving/driven, inbound/outbound,
primary/secondary, API/SPI, left/right.

In the preview edition we used driving/driven and primary/ secondary.
Some people found these terms difficult to use, and wrote
inbound/outbound or API/SPI instead.

Only driving/driven and primary/secondary apply to all three, actor,
adapter and port. You can talk about a driving actor, a driving adapter, a
driving port, and similarly for the driven side. You can also talk about a
primary actor, a primary adapter, a primary port, and similar for
secondary.

But you can’t say “inbound actor” and “outbound actor.” Similarly,
“API actor”, “SPI actor” make no sense.

Personally, I (Alistair) don’t mind synonyms. If you like inbound/
outbound port, and inbound/outbound adapter, that’s fine. For the
ports, having “API ports” and “SPI ports” makes sense, since ports are
just interfaces anyway.

Where you might find “inbound” and “outbound” most useful is in
naming your folders. Alistair never liked seeing two folders next to each
other called Driven Adapters and Driving Adapters. They are just too
similar. Calling them Inbound Adapters and Outbound Adapters seems
like a good idea. Alistair has also seen “Provided/Required” and
“Controllers/Providers.” (More on folder structure in Chapter 4.8:
Where do I put my files?)

In this book we stick with driving/driven and primary/ secondary, so
that we can apply the same adjective to actor, adapter and port. But in
your life, feel free to use inbound /outbound for your ports and
adapters, if you like, or API /SPI for your ports if that’s all you’re talking
about.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 37 of 194

Weak versus strong conformance to the pattern

You can implement this pattern in a legal but weak way. Suppose you
know that the database will use SQL. Without tying to a particular
database, you still express the driven port in SQL. While technically
meeting the rules of the architecture, that still ties your system to SQL,
which is not what we are after.

To get a proper, or strong implementation of the Ports & Adapters
architecture,

the app cannot know anything about the external technology.

That is, the driven port is expressed purely in terms of concepts that
make sense in the application language. It can’t even know that there a
database, let alone an SQL one.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 54 of 194

3.3. The BlueZone example
The BlueZone is Juan’s full example of how the pattern works.

Note (2025) Juan kept evolving his code, creating two designs in two
repositories. A book like this can’t keep up with the changes, so in this
chapter I’ll outline one of his designs, and let you compare the two
designs he left. Check:

https://github.com/jmgarridopaz/bluezone

https://github.com/HexArchBook/bluezone_pro

BlueZone allows car drivers to use a web UI to pay for parking at various
zones in a city. Different colored lines on the road indicate different
parking rates; for example, central downtown is more expensive than a
few blocks out. After possibly looking up the rates of different zones,
the driver buys a ticket for a zone for a set time, paying by various
means.

The parking inspector will check whether parked cars have paid
correctly for their zone and time.

Figure 3.1. The actors in the BlueZone example

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 71 of 194

Suppose you have two driving ports, one for a user calculating
taxes and another for the admin person doing general admin
things.

The folders (and also the port and interface) names will be
"for_calculating_taxes" and "for_admin_purposes." Actual
naming and coding is up to your personal standards, they are not
part of the pattern.

For the Test Cases folder, organize as you like.

In the driving adapters and driven adapters folders, make a subfolder
for each adapter.

Naming your folders.

As described in the glossary, chapter 2.1, you have several choices for
how to name the folders. In this book, we continue to write
“Driven/Driving Ports” and “Driven/Driving Adapters.” However, some
people find those words confusing, so they call the folders
“Inbound/Outbout Ports” and “Inbound/Outbound Adapters.” A recent
proposal was to write: “Provided Interfaces” and ‘Required Interfaces.”
Feel free to use any of these alternatives if you like.

Figure 4.6 shows three ways of setting them up. The top one shows
driving/driven port definitions inside the app project. The second has
the ports into their own folder. In the third, I show how it looks if you
call them Inbound/Outbound. Your choice. These decisions are not
mandated by the pattern.

Folder structures that don't match the intentions of the pattern cause
confusion and even damage to the project. Create clarity in your project
by implementing them in one of these ways.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 72 of 194

Figure 4.6. Possible folder/project structures.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 89 of 194

5.5. Layered, onion, clean, hexagonal: what is the
difference?
The Ports & Adapters architecture differs from layered, onion and clean
architectures in two ways:

• Ports & Adapters has only two layers: the inside (the app), and
the outside (everything else).

• Ports & Adapters requires that you organize the external actors
so they connect to specific ports.

But let’s look at conventional layered architectures first. In a layered
architecture, you separate code by concerns and arrange them from
“higher” and “lower,” such that higher-level items call or have a
dependency upon lower-level ones. More abstract concerns like policy
objects are placed higher in the architecture, while hardware and
drivers sit on the bottom. The policy items have dependency on the
drivers and hardware.

Ports & Adapters, onion, and clean architectures all put the application
and domain below the UI and infrastructure, as Figure 5.2 illustrates.
This makes them appear upside down compared to traditional layered
architecture pictures.

The inside of the app with the policy items is on the bottom. Everything
else is above it, pointing downward. That is because the app can’t have
a compile-time dependency on anything else.

Inside the upper layer, the “outside”, you may have any number of
layers of your own choosing. Those decisions are outside the Ports &
Adapters architecture and are your personal choices.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 90 of 194

Figure 5.2. Ports & Adapters only specifies two layers: inside and

outside.

Figures 5.3 and 5.4 show why the Ports & Adapters architecture looks
strange when you are used to a layered architecture.

Figure 5.3 shows an invoicing system with a GUI and a database. On the
left is the usual 3-layer architecture with dependencies pointing
downward. The execution calls also go down.

Figure 5.3. Order of dependencies and execution in 3-layer versus Ports

& Adapters architectures.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 91 of 194

On the right is the Ports & Adapters architecture. As with Figure 5.2, the
invoicing system is on the bottom, with both the GUI and the database
(or its adapter) having a compile-time dependency on the invoicing
system.

What is surprising is that the execution sequence goes in the opposite
direction of the dependencies on the driven side. The invoicing system
still sends calls to the database, but the database (or its adapter) has the
compile-time dependency on the invoicing system. This is different to a
layered architecture.

Figure 5.4. Moving the adapter outside and making it dependent on

both the system and the database.

Figure 5.4 shows the adapters. The database being purchased has its
own published interface, which doesn’t match the domain interface of
the system under design. An adapter is needed. Usually, that adapter is
considered part of the system being designed. Both the compile-time
dependencies and the execution flow go from the business logic to the
adapter, to the database. This is shown on the left side.

The right side shows the dependencies and execution in the Ports &
Adapters architecture. Note that the adapter is outside the system.

• The system publishes its driven port specification (the hook
going upward in the drawing);

• the adapter has a compile-time dependency on and implements
that interface (the ball fits into the hook);

• the adapter also has a compile-time dependency on and uses
the database defined interface.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 92 of 194

Note that neither the invoicing system nor the database depend on
each other – they are independent. The adapter depends on both of
them. The execution flows from the invoicing system to the adapter to
the database (and back again).

James Grenning’s Embedded IoT

In a parallel evolution, James Grenning (another author of the Agile
Manifesto) developed the exact same architecture as Ports & Adapters
for systems involving hardware. We found our two designs identical,
just using different words. Notable to me was his referring to the driven
adapters as the “Service Abstraction Layer,” which seems just right.

Figure 5.5. Grenning’s IoT system.

His sample diagram confused me for a bit, because the ‘get’ to the
message queue is a driven port! That worried me, until he told me that
the message queue is polled: the app sends a ‘get’ request every
second. So the ports are correct.

See his full writeup, with code in Python, in Chapter 8 of the
forthcoming Clean Code: A Handbook of Agile Software Craftsmanship,
2nd Ed (2025).

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 93 of 194

Onion and Clean

Onion and Clean have the same dependency structure as Ports &
Adapters. The two differences are that they don’t require the
specification of ports, and they do call for additional layers that Ports &
Adapters doesn’t. Figures 5.5 and 5.6 show these layers.

Once you have implemented Ports & Adapters, you are welcome to add
the layers of clean and onion – or not. Those decisions are outside Ports
& Adapters. Your choice.

Figure 5.6. Clean architecture

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html

Figure 5.7. Onion architecture

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 94 of 194

If you’re feeling bombarded by drawings right now, don’t worry. Recall
the wisdom of David Adamo Jr: The code is simpler than the drawings.

Figure 5.8. Architecture drawings are not code:

https://twitter.com/davidadamojr/status/1690541235918753792

Remember, in Ports & Adapters you are free to organize the inside of
the app in any way you like, and the things outside the app in any way
you like.

Just put ports in place. Oh, and write those tests.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 95 of 194

Moving from Layered to Ports & Adapters.

Oliver Zihler published a wonderful article on Substack
[https://codeartify.substack.com/p/from-layered-to-hexagonal-architecture] “From
Layered to Hexagonal Architecture in 2 steps”, which describes it
clearly. Here are his figures. Read the article for his explanation if it is
not evident how to interpret them.

Step 0: Your starting point:

Step 1: Invert dependencies:

Step 2: Make sure the ports are defined inside the app. Done.

Figure 5.9. From Layered to Hexagonal Architecture in 2 steps

(Figures copyright Oliver Zihler)

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 105 of 194

6.1. The longer history
One of the last contributions Juan made to this book was to go back and
clean up the timeline. I remain grateful to him for his attention to detail
and correctness.

To be clear about one point about this history: I am not a systems
programmer, I have always been an application programmer. But I grew
up with Smalltalk’s Model-View-Controller on the driving side, being
able to swap drivers easily. I simply assumed and expected that I should
be able to do the same on the driven side. I kept asking for this
capability of the system architects and being told it wasn’t possible. It
was out of defense that I started asking myself, How should things be
done so that it would be possible? I called it shunt at first, and then
loopback (mocks weren’t invented then), came up with the idea of how
to do it, and finally in 2004-2005 was in a situation to write some code
that did it.

In other words, I created this architecture so that I, as an application
programmer, could have those safety /swapping features I needed to
develop the application.

1988: Smalltalk and C

Alistair unknowingly implemented Model-View-Controller in his
Smalltalk prototype, but his C programmer didn’t. When the need
arose to change the source of inputs, that program had to be torn
apart and rewritten.

At IBM Research in Switzerland, I had just learned Smalltalk for a new
project, with a pre-doctoral student on my team who would implement
what my Smalltalk prototype did into a properly fast diagram editor in
C.

The Smalltalk tutorial had me code up a "talking parrot", to get us used
to state machines. As it turned out, not to my knowledge at the time,
that example used the Model-View-Controller architecture. When I
made my first real program, I simply copied the talking parrot example
and changed it to fit my needs. (There is a separate lesson in here about
how to learn a new language, but we can leave that out for now.) As a
result, I had the MVC structure in my code without knowing it.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 193 of 194

Fin
I want to thank Christopher Hayes-Kossmann for copy-editing the
preview edition. Hemal Varambhia make a spectacular gift proofing this
updated edition with his eagle eyes. Hemal, Simone Giusso, Rob Jarratt,
Ricardo Guzmán Velasco, Nicky Ramone, Chris Carroll, and Eleonora
Ciceri did some really detailed reading and provided great feedback.

It is strange that I have been describing this pattern for 30 years. It is a
really simple architecture to implement, and yet we are still discovering
relationships to other people’s work and other patterns. As someone
commented, the code is much simpler than the descriptions of the
pattern. It is for that reason that we show the code in the first and last
sections of the book.

And finally, for me, Alistair, I feel like I lost half of my Hexagonal brain
with the passing of Juan Manuel Garrido de Paz. He was the person I
always wrote to when someone posed a new question or I had a
doubt about a piece of code. His knowledge was encyclopedic, his
method analytical. We debated inces-
santly until we agreed on an answer that
satisfied us both.

Here is his favorite image he sent me
during those discussions:

R.I.P. Juan Manuel Garrido de Paz. Thank you.

Hexagonal Architecture Explained, the updates from v0.9-v1.1

© Alistair Cockburn 2025 Page 194 of 194

About the Authors

Dr. Alistair Cockburn (pronounced CO-BURN),
known for his wild hair photo on LinkedIn, was
named as one of the “42 Greatest Software
Professionals of All Times" in 2020, as a world
expert on object-oriented development,
software architecture, project management, use
cases and agile development. Since 2015 he has

been working on expanding agile to cover every kind of initiative,
including social impact project, governments, and families. For his
latest work, see https://alistaircockburn.com/.

Juan Manuel Garrido de Paz (August 3, 1970 - April 18, 2024) won his
Bachelor in Software Engineering at the Polytechnic University of
Madrid. He became the world’s other leading authority on the Ports
& Adapters pattern by probing and interacting with Dr. Alistair
Cockburn over years. A senior developer for the government of
Andalucía, his two passions were Hexagonal Architecture and
Recreativo de Huelva Football Club. Sadly, Juan passed away just
weeks before this book went to print. This book is dedicated to him
and his life.

